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Abstract

In this paper constructal theory is applied to the fundamental problem of how to arrange discrete heat sources on a

wall cooled by forced convection. The global objective is to maximize the conductance between the discrete heated wall

and the fluid. This is equivalent to minimizing the temperature of the hot spot on the wall, when the heat generation rate

is specified. The mechanism by which the global objective is achieved is the generation of flow configuration, in this case

the distribution of discrete heat sources. Two different analytical approaches are used: (i) large number of small heat

sources, and (ii) small number of heat sources with finite length, which are mounted on a flat wall. Both analyses show

that the heat sources should be placed nonuniformly on the wall, with the smallest distance between them near the tip of

the boundary layer. If the Reynolds number is high enough, then the heat sources should be mounted flush against each

near the entrance to the channel. The analytical results are validated by a numerical study of discrete heat sources that

are distributed nonuniformly inside a channel formed by parallel plates.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Internal forced convection continues to be one of the

most active areas of heat transfer research today. The

reason is the strong emphasis on the miniaturization of

cooling and heating configurations, the success of which

depends greatly on the optimization of flow configura-

tion. The challenge is not only to predict thermal and

fluid behavior, but also to simulate a sufficient number

of flow configurations so that the effect of geometry on

performance is clear.

In this arena, the emergence of constructal theory

and design as an unbiased (principle based) approach to

optimizing flow architecture, is worth considering. No

configuration is favored a priori based on intuition––all
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configurations compete under the specified global con-

straints. Many applications of this approach have been

published, and the main trends are reviewed in [1]. What

flows through the structure (fluid, heat, electricity,

goods) is not as important as how the structure �morphs’

in order to perform best, globally, while meeting the

constraints. Most relevant to the architecture optimized

in this study is a series of studies in which the density of

heat transfer has been optimized subject to volume

constraints (Ref. [1], Chapter 3).

In this paper we consider the fundamental problem of

optimizing the distribution of discrete heat sources on a

wall with forced convection. Several papers have been

published on the heat transfer performance of walls with

distributed heat sources [2–11]. Some have recognized

the opportunity to improve global performance by

optimizing the nonuniform distribution of discrete heat

sources, for example, Refs. [6,11]. In the present paper we

approach this problem analytically and numerically, and

show that an optimal nonuniform distribution exists,
ed.
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Nomenclature

cP specific heat at constant pressure, J kg�1 K�1

C global conductance, Eq. (34)

Cth theoretical global conductance, Eq. (17)

D vertical spacing, m

D0 heat source size, m

g gravity, m s�2

k thermal conductivity, Wm�1 K�1

L length, m

n iteration number, Eq. (30)

N number of heat sources

N 0 number of heat sources per unit of length,

m�1

P pressure, Nm�2

Pr Prandtl number

q0 heat transfer per unit length, Wm�1

q00 continuously distributed heat flux, Wm�2

q000 uniform heat flux over one heat source,

q0=D0, Wm�2

Q0 total heat transfer rate, Wm�1

R residual vector

S heat source spacing, m

Re Reynolds number, Eq. (8)

T temperature, K

u horizontal velocity component, m s�1

u solutions vector

v vertical velocity component, m s�1

x, y Cartesian coordinates, m

x0 continuously heated region, m

Greek symbols

a thermal diffusivity, m2 s�1

q density, kgm�3

m kinematic viscosity, m2 s�1

l viscosity, kg s�1 m�1

Subscripts

0; 1; . . . ;N heat source index

max maximum when N ¼ 1

2m maximum when N ¼ 2

3m maximum when N ¼ 3

th theory

Superscripts

i trial mesh

(�) dimensionless variables
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that it depends on flow strength (Re), and that when the

heat sources are sparse the optimization has a sizeable

effect on global performance.
2. Large number of small heat sources

Consider a horizontal plate of length L, which is in

contact with a free stream of velocity U1 and tempera-

ture T1. The plate is heated by line heat sources of fixed

strength q0 [W/m]. The heat sources appear as points on

the plate sketched in Fig. 1. Each line heat source ex-

tends in the direction perpendicular to the figure. The

flow is two-dimensional in the laminar boundary layer

regime. The number of heat sources per unit of plate

length is:
Fig. 1. The multiple length scales of the distribution of finite-

size heat sources on a horizontal plate.
N 0 ¼ numbers of sources

unit length
ð1Þ

According to the constructal design, the global system

(the plate and the free stream) will perform best when all

its elements work as hard as the hardest working ele-

ment [1]. This means that if Tmax is the maximal tem-

perature that must not be exceeded at the hot spots that

occur on the plate, then the entire plate should operate

at Tmax. The problem is to determine the distribution of

heat sources on the plate, NðyÞ, such that the wall

temperature is near the allowed limit:

TwðxÞ ¼ Tmax; constant ð2Þ

Assume that the density of line source is sufficiently high

so that we may express the distribution of discrete q0

sources as a nearly continuous distribution of heat flux:

q00ðxÞ ¼ q0N 0 ð3Þ

The heat flux distribution that corresponds to Eq. (3)

and PrJ 1 is part of the solution for the laminar

boundary layer on an isothermal wall (Ref. [12], p. 44),

Nu ¼ 0:332Pr1=3Re1=2x ð4Þ

or

q00x
kðTmax � T1Þ ¼ 0:332Pr1=3

U1x
m

� �1=2

ð5Þ
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By eliminating q00 between Eqs. (3) and (5) we obtain

required distribution of heat sources,

N 0ðxÞ ¼ 0:332
k
q0

Tmaxð � T1ÞPr1=3 U1

m

� �1=2

x�1=2 ð6Þ

The function N 0ðxÞ represents the optimal configuration

of heat sources. It shows that the sources must be

positioned closer when they are near the start of the

boundary layer. The total number of heat sources is

N ¼
Z L

0

N 0dx ¼ 0:664
k
q0

Tmaxð � T1ÞPr1=3Re1=2 ð7Þ

where

Re ¼ U1L
m

ð8Þ

The rate of heat transfer from all the heat sources to the

T1 fluid is

Q0
max ¼ q0N ¼ 0:664kðTmax � T1ÞPr1=3Re1=2 ð9Þ

This Q0
max expression is the same as the total heat

transfer rate from an isothermal wall at Tmax. Eq. (9)

represents the maximized global performance of the wall

with discretely distributed heat transfer.
3. Heat sources with finite length

The physical implementation of the optimal distri-

bution derived in Section 2 is limited by a manufacturing

constraint: there exists a smallest scale in the design – the

D0 thickness of the line heat source. Features smaller

than D0 cannot be made. This constraint endows the

design with structure, or coarseness.

The local spacing between two adjacent heat lines is

SðxÞ. This spacing varies with x in accordance with the

optimal N 0 distribution function, Eq. (6). Specifically,

the plate length interval that corresponds to a single line

heat source q0 is D0 þ SðxÞ. This means that the local

number of heat sources per unit of wall height is

N 0ðxÞ ¼ 1

D0 þ SðxÞ ð10Þ

The strength of one source (q0) is spread uniformly over

the finite thickness of the source (q000 ¼ q0=D0). The heat

flux q000 is a known constant, unlike the function q00ðxÞ
of Eq. (5), which is the result of design. By elimi-

nating N 0ðxÞ between Eqs. (6) and (10) we obtain the

rule for how the wall heating scheme should be con-

structed:
SðxÞ
L

ffi 3q0Pr�1=3Re�1=2

kðTmax � T1Þ
x
L

� �1=2
� D0

L
ð11Þ

The spacing S increases as x increases. Near the start of

the boundary layer, the SðxÞ function of Eq. (11) has

negative values. This means that the description pro-

vided by Eqs. (1)–(10) breaks down in a region

(06 x6 x0) near the start of the boundary layer. Because

D0 is the smallest length scale of the structure, the

spacings S cannot be smaller than D0. We define x0 as the
longitudinal scale where S is as small as D0 in an order of

magnitude sense,

S � D0 when x � x0 ð12Þ

By substituting this into Eq. (11) we determine the

starting length scale over which Eq. (11) is not valid

x0
L

� �1=2
� 0:664

D0

L
k
q0
ðTmax � T0ÞPr1=3Re1=2 ð13Þ

In summary, the wall structure has two distinct sec-

tions. Downstream of x � x0, the wall is heated on dis-

crete patches of length D0, which are spaced according

to Eq. (11). Upstream of x � x0, the heat sources are

mounted flush against each other. We model this start-

ing section as one with uniform heat flux, in such a way

that at the end of this section (at x � x0) the wall tem-

perature reaches the same maximum level (Tmax) that the

optimized spacings (11) are designed to maintain

downstream of x � x0. The wall temperature is T0 at

x ¼ 0, reaches Tmax at the transition distance x0, and

continues undulating at Tmax (and slightly under) from x0
until L.

These basic features of the optimal design are illus-

trated in Fig. 1. The design has multiple length scales: L,
D0, x0 and SðxÞ. The first two length scales are con-

straints. The last two are results of global maximization

of performance, subject to the constraints. Taken to-

gether, the lengths represent the constructal design––the

flow architecture that brings the entire wall to the

highest performance level possible.

The global heat transfer performance of the optimal

design can be estimated analytically in the limit where

the number of heat-source strips D0 is sufficiently large.

In this limit, the integral (7) applies only in the down-

stream region of the plate (x0 < x < L), where the con-

centrated sources are spaced optimally according to Eq.

(6). The heat transfer rate collected from x � x0 to x ¼ L
is

Q0
x0�L ffi 0:664kðTmax � T0ÞPr1=3Re1=2 1

�
� x0

L

� �1=2�
ð14Þ

Over the starting section of length x0, we use the classical
result for the wall with uniform heat flux, PrJ 1 and

temperature Tmax at x � x0, cf. Ref. [12], p. 44,
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Q0
0 ffi 0:453kðTmax � T0Þ

U1x0
m

� �1=2

Pr1=3 ð15Þ

The total heat transfer rate can be expressed as

Q0 ffi Q0
0 þ Q0

x0�L ffi Q0
max 1

�
� 0:318

x0
L

� �1=2�
ð16Þ

where the approximate character of the result stems

from the order of magnitude estimation of x0, Eq. (13).
In the limit x0=L ! 0, the total heat transfer rate Q0

approaches Q0
max, because in this limit the wall temper-

ature rises uniformly to Tmax. The right side of Eq. (13)

shows that this limit is approached as D0=L decreases,

and as q0=½kðTmax � T0Þ� increases, i.e., when the heat

sources are concentrated, numerous and strong.

Eq. (16) shows that the global performance of the

wall heating structure can be summarized by calculating

the theoretical global conductance

Cth ¼
Q0

Q0
max

ð17Þ

where Q0
max is the constant ceiling value provided by Eq.

(9). The ideal design is the isothermal wall, for which

Cth ¼ 1. In the opposite extreme, when D0 is not small

and x0 approaches L, Cth approaches 1� 0:318 ¼ 0:682,
which corresponds to a L-long wall with uniform heat

flux and Tmax at x ¼ L. Eq. (16) summarizes the maximal

performance of all the designs contained between the

two limits. The performance of all the designs that have

not been optimized is characterized by Cth values smaller

than those given by Eqs. (16) and (17).
4. Numerical formulation

In the second part of this study we simulated

numerically the flow and heat transfer in the vicinity of

the wall with discrete heat sources, Fig. 2. The wall of

length L is the bottom side of a channel of spacing D.
The upper side is modeled as adiabatic. Cold fluid is

pushed into the channel by a flow that approaches with
Fig. 2. Two-dimensional channel with
a free-stream velocity U1. The mass, momentum and

energy equations were simplified in accordance with the

assumption of two dimensional steady state laminar

flow with constant properties,

ou
ox

þ ov
oy

¼ 0 ð18Þ

q u
ou
ox

�
þ v

ou
oy

�
¼ � oP

ox
þ lr2u ð19Þ

q u
ov
ox

�
þ v

ov
oy

�
¼ � oP

oy
þ lr2v ð20Þ

qcP u
oT
ox

�
þ v

oT
oy

�
¼ kr2T ð21Þ

where r2 ¼ o2=ox2 þ o2=oy2. The variables and proper-

ties are defined in the Nomenclature. The numerical

domain is composed of the channel (L� D), an up-

stream section (Lu � D) and a downstream section

(Ld � D): see Fig. 2. These extensions of the numerical

domain are important and possibly critical in channels

with small aspect ratios, L=D < 10, even at high flow

velocities, which is the domain studied in the present

work. From a practical point of view, these extensions

were introduced to mimic a free stream condition, which

describes a more realistic situation than the discretiza-

tion of the fluid between the parallel plates only (L� D).
From the numerical point of view, the upstream reser-

voir frees the flow to develop itself hydraulically starting

at the entrance plane of the channel, while the inlet

uniform flow boundary condition is specified at the en-

trance plane of the upstream reservoir. By doing this, no

velocities profiles are assumed at the channel entrance.

The downstream reservoir also delayed the imposition

of an unrealistic outlet boundary condition on the exit

plane of the channel. Accuracy tests showed if Lu ¼
Ld ¼ 0:5 L, the total heat transfer rate is insensible (with
changes less than 1%) to any further doubling of Lu and

Ld.

The nondimensionalization of Eqs. (18)–(21) is based

on the free-stream velocity U1, which is fixed: the
discrete heat sources on one wall.
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variables and properties are defined in the Nomencla-

ture. The dimensionless variables are:

~x;~y; eD0; eSi

� �
¼ ðx; y;D0; SiÞ

L
ð~u;~vÞ ¼ ðu; vÞ

U1
ð22Þ

eT ¼ T � T1
q000L=k

eP ¼ P
qU 2

1
ð23Þ

Eqs. (18)–(21) become

o~u
o~x

þ o~v
o~y

¼ 0 ð24Þ

~u
o~u
o~x

 
þ ~v

o~u
o~y

!
¼ � oeP

o~x
þ 1

Re
r2~u ð25Þ

~u
o~v
o~x

 
þ ~v

o~v
o~y

!
¼ � oeP

o~y
þ 1

Re
r2~v ð26Þ

~u
oeT
o~x

 
þ ~v

oeT
o~y

!
¼ 1

RePr
r2eT ð27Þ

where

Re ¼ U1L
m

and Pr ¼ m
a

ð28Þ

The boundary conditions are: ~u ¼ 1 and eT0 ¼ 0 at the

inlet of the computational domain; o~u=o~x ¼ o~v=o~x ¼
oeT =o~x ¼ 0 at the outlet, free slip and no penetration at

the fluid-fluid interface (symmetry); no-slip and no

penetration at the solid surfaces. The thermal boundary

conditions on the discretely heated wall are uniform heat

flux over each heat source (~q ¼ 1), and adiabatic over

the wall sections located between heat sources. The

uniform heat flux condition on the heat source surface is

oT
oy

¼ � q000
k

at y ¼ �D=2 ð29Þ

The optimization process consisted of simulating and

comparing a large number of wall heating configura-

tions. Eqs. (24)–(27) were solved using a finite element

code [13]. The computational cost was fairly small,

taking no more than 90 s per simulation, on a Sun Blade
Table 1

Grid refinement test (eD0 ¼ 0:1, eS0 ¼ 0, eD ¼ 0:3, Re ¼ 100 and Pr ¼ 0

Nodes per L Nodes Elements ~q

25 357 131 0.8703

51 1515 464 0.9506

75 3473 997 0.9664

101 6231 1730 0.9736

201 24461 6460 0.9860
1000 (Ultra Spark III) Unix machine. The numerical

domain was discretized using quadrilateral elements

with 9 nodes per element. A penalty function was ap-

plied to eliminate the explicit appearance of the pressure

term in Eqs. (25) and (26). The penalty parameter was

set equal 10�8. The Newton–Raphson method was used

to solve the nonlinear system of Eqs. (24)–(27). The

convergence criteria adopted for the velocity and resid-

ual vectors were:

uðnÞ � uðn�1Þ
�� ��

uðnÞk k 6 0:001;
RðuðnÞÞ
�� ��

R0k k 6 0:001 ð30Þ

where u is the velocity vector solution, and R is the

residual vector.

The numerical work started with a detailed grid

generation. Because boundary layers are present, a

nonuniform grid was used in the y direction, and the

smallest elements were placed close to the walls. Mesh

independence was achieved when less than 101 nodes per

unit of dimensionless length were used in both direc-

tions, although for simplicity, we decided to use 101

nodes per unit of dimensionless length in both direc-

tions. Grid tests were performed by monitoring the ap-

plied heat flux

~q ¼ q
q000

ð31Þ

and the maximal temperature reached at a point on the

bottom wall,

eTmax ¼
Tmax � T1
q000L=k

ð32Þ

Two different configurations were selected to show how

the grid independence was achieved: one with a small

heat source of length eD0 ¼ 0:1, and another with uni-

form heat flux applied over the entire bottom walleD0 ¼ 1. Table 1 shows that ~q and eTmax are insensitive to

any further grid refinement when the grid has 51 nodes

per L. The importance of monitoring the calculated

dimensionless heat flux ~q stems from the fact that in this

way we can check the code and the nondimensional-

ization. For example, if the code returns the calculated ~q
equal or at least very close to the applied one, it means
:7)

~qi�~qiþ1

~qiþ1

��� ��� eTmax
eT i
max�eT iþ1

maxeT iþ1
max

���� ����
– 0.04566 –

0.0844 0.04777 0.0441

0.0163 0.04847 0.0144

0.0073 0.04867 0.0041

0.0050 0.04885 0.0037



Table 2

Grid refinement test (eD0 ¼ 1, eD ¼ 0:3 and Pr ¼ 0:7)

Nodes per L Nodes Elements eTmax

Re ¼ 102 103 104 105

25 35 131 0.14561 0.05944 0.02381 –

51 1515 464 0.14655 0.06048 0.02183 0.00802

75 3473 997 0.14674 0.06079 0.02205 0.00763

101 6231 1730 0.14681 0.06081 0.02200 0.00740

201 24461 6460 0.14692 0.06092 0.02204 0.00739

Fig. 4. The maximized global conductance that corresponds to

the optimized location of the single heat source.

2144 A.K. da Silva et al. / International Journal of Heat and Mass Transfer 47 (2004) 2139–2148
that the code is correct, and that we may proceed to

another level of correcting and improving the numerical

scheme. Table 2 shows that eTmax is also insensitive to

further grinding with less than 101 nodes per L when one

large heat source is placed on the bottom wall.

The spacing D between the walls of the channel has a

strong effect on the global conductance between the

walls and the fluid [14]. The optimal spacing for maxi-

mal heat transfer rate density has been correlated by

eDopt ffi 3:2
b
L

� �1=2

Re�1=2Pr�1=4 ð33Þ

where b is the total length occupied by the heated sec-

tion, i.e., the flush-mounted sources plus the unheated

patches between them. The optimal spacing is such that

the boundary layers merge at the channel exit. Based on

Eq. (33), we can determine the appropriate D spacing

that leads the numerical domain towards a similar

configuration described previously in Sections 2 and 3.

In other words, the numerical eD spacing was selected to

be greater than eDopt, for example eD ¼ 0:3 in Figs. 3 and

4. This means that in all the numerical simulations the

boundary layers are distinct.
Fig. 3. The maximization of the global conductance when only

one heat source is present.
5. Optimal distribution of heat sources

The global conductance of the forced convection

configuration is

C ¼ Q0

kðTmax � T1Þ
ð34Þ

where Q0 is the total heat flow through the heat sources

and Tmax is the maximal temperature that may occur at

any point on the plate. The dimensionless conductance

expresses the relation between a fixed heat input and the

largest temperature difference between the solid wall and

the coolant. The maximization of C is equivalent to the

minimization of Tmax.

Fig. 3 shows the effect of eS0 on C when only one heat

source is attached to the plate. The location of the heat

source has a strong effect on the global conductance: C
increases by 25% if the heat source is moved from near

the outlet (eS0 ¼ 0:9) to the inlet (eS0 ¼ 0). The same

trend was found in all the cases simulated numerically in

the range 102 6Re6 104 and 0:056 eD0 6 0:2.
Fig. 4 reports the maximized global conductance that

corresponds to the optimized single-source locations,eS0;opt ¼ 0 (e.g. Fig. 3). On this log–log graph, Cmax is

proportional to Re0:47 when Re ffi 104. Note also the



Fig. 6. The maximized global conductance that corresponds to

the optimized placement of two heat sources.
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constancy of the ratio between the Cmax values of suc-

cessive curves, where eD0 changes by a factor of 1/2,

CmaxðeD0 ¼ 0:05Þ
CmaxðeD0 ¼ 0:1Þ

ffi 0:42
CmaxðeD0 ¼ 0:1Þ
CmaxðeD0 ¼ 0:2Þ

ffi 0:35 ð35Þ

Complexity of geometry and computation increases as

two heat sources of equal strength (eD0) are placed on the

bottom wall of the flow channel. There are two degrees

of freedom, the longitudinal spacings eS0 and eS1. The

optimal configuration was found by performing two

nested loops. In the inner loop eS0 was fixed, and eS1

varied until C reached Cmax. In the outer loop the

function Cmax (eS0) was maximized by repeating the inner

loop for several close values of eS0. The maximal value of

Cmax is labeled C2m, and occurs when eS0 and eS1 reach

their optimal values.

Throughout the Re and eD0 range investigated

numerically, we found that eS0;opt ¼ 0, i.e. the best posi-

tion for the first heat source is at the start of the

boundary layer. This conclusion is consistent with what

we found in Section 3 and Fig. 3.

The second heat source has an optimal position

downstream, which is reported in Fig. 5. The second

heat source migrates toward the start of the boundary

layer as Re increases. This trend is in agreement with the

analytical results developed in Sections 2 and 3. Fur-

thermore, Fig. 5 reveals a �transition’ at Re � 103. When

ReK 103, the best location for the second heat source is

far from the entrance, and is insensitive to changes in Re.
It is downstream, far from the entrance, that the second

heat source can release its heat flux without excessively

high temperatures on the wall. When Re > 103, the fast

flow prevents the occurrence of hot spots in the down-

stream section, and eS1;opt migrates safely toward the tip

of the boundary layer. Fig. 5 suggests that when Re
reaches above 104 the second heat source comes to reside

flush against the first heat source. This behavior was

anticipated analytically in Section 3.
Fig. 5. The optimal locations of two heat sources.
Fig. 6 summarizes the results for the twice-maximized

global conductance (C2m) that corresponds to eS0;opt ¼ 0

and the eS1;opt values shown in Fig. 5. Noteworthy are the

similarities between Figs. 6 and 4, because C2m is also

proportional to Re0:47.

Another interesting feature emerges when the total

heated area fraction of the wall is fixed. For example,

when the heated area fraction is fixed at N eD0 ¼ 0:1, and
if Re ¼ 102, then for one heat source (N ¼ 1) Fig. 4 shows

that C ¼ 2:054, while for N ¼ 2 Fig. 6 reports C ¼ 2:673.
The change from one optimally placed heat source (Fig.

4) to two optimally placed sources (Fig. 6) results in a

30% improvement in global performance. This stepwise

improvement depends on Reynolds number.

If Re is set equal to 103 and 104, then the relative

improvement becomes 7% and, respectively 3%.

Diminishing returns are reached at higher Reynolds

numbers because faster flows �shave’ the temperature

peaks (hot spots) more effectively. The same relative

increases in global conductance C are registered if the

total heated area fraction N eD0 is fixed at 0.2 in the range

102 6Re6 104. The main conclusion is that the global

performance increases as the optimized complexity of

the heating arrangement increases. This is in agreement

with the analysis of Sections 1 and 2.

The method illustrated until now for one and two

heat sources can be applied to the optimization of more

complex arrangements. Next on the path toward greater

complexity is the wall with three heat sources. There are

three degrees of freedom ðeS0; eS1; eS2Þ, and three nested

optimization loops. The optimal position for the first

heat source is once again at the start of the boundary

layer, eS0;opt ¼ 0. The optimized second and third spac-

ings are reported in Fig. 7. The second heat source mi-

grates toward the first as Re increases, and rests flush

against it when ReJ 103. The third heat source is always

located at the trailing edge of the wall, in spite of what



Fig. 7. The optimal locations of three heat sources.

Fig. 8. The effect of the number of discrete heat sources on the

maximized global conductance when eD0 ¼ 0:5.

Fig. 9. The effect of the number of discrete heat sources on the

maximized global conductance when eD0 ¼ 0:1.

Fig. 10. The effect of the number of discrete heat sources on the

maximized global conductance when eD0 ¼ 0:2.
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the upper frame of Fig. 7 might suggest as eS2;opt in-

creases with Re. This can be verified by adding up the

lengths occupied by the three heat sources and their

spacings, 3eD0 þ eS1;opt þ eS2;opt ¼ 1.

The maximized global conductance for the wall with

three heat sources (C3m) is reported in Figs. 8–10. Each

graph is made for a single heat source length (eD0), and

on it we compare C3m with the corresponding values

obtained for C2m and Cmax. In other words, each of Figs.

8–10 illustrates the effect of optimized complexity (N ) on

the maximized global performance of the multi-scale

arrangement.

The chief conclusion is that performance increases as

complexity increases. In all the cases documented in this

study the performance gains in global conductance are

significant for each step increase in N . Viewed together,
Figs. 8–10 also show the effect of the heat source size

(eD0), which represents the �coarseness’ of the heat flow

structure. Diminishing returns are visible in Fig. 10,

where eD0 has the largest value: the jump from N ¼ 2 to

N ¼ 3 (or from C2m to C3m) is smaller than from N ¼ 1

to N ¼ 2 (or from Cmax to C2m).

The bold and dashed curves in Fig. 8 are the same as

the top curves in Figs. 9 and 10. The bold curve repre-

sents the performance of the wall with the largest

number of heat sources, Nmax ¼ 1=eD0, all mounted flush

against each other. In this limit no optimization is pos-

sible: all the spacings are zero, however, N depends oneD0. The dashed curves represent the maximal global

conductance determined theoretically, which is obtained

by rearranging Eq. (9) as

C ¼ Q0
max

kðTmax � T1Þ
¼ 0:664Pr1=3Re1=2 ð36Þ



Fig. 11. Maximal global conductance versus the Reynolds

number: comparison between the theoretical solution and the

numerical results.

A.K. da Silva et al. / International Journal of Heat and Mass Transfer 47 (2004) 2139–2148 2147
These ceiling curves are useful in several respects. First,

the diminishing returns noted in the preceding para-

graph are pronounced when the maximized conduc-

tances (Cmax, C2m, C3m) are close to the ceiling

conductance. This happens when the heat source size is

large, and when the number of heat sources that could

be installed is small.

Another thought that comes from plotting the bold

curves in Figs. 8–10 is whether the wall with continuous

and uniform heat flux is the best design. We know from

Sections 2 and 3 that this is not the case, however, Figs.

8–10 seem to suggest it. In order to verify this, Eq. (17)

was nondimensionalized and applied to a configuration

where the entire bottom wall of the channel is subjected

to a uniform heat dimensionless heat flux ~q ¼ 1. In this

case

Cth ¼
1eTmax0:664Pr1=3Re1=2

ð37Þ

where eTmax is the maximum dimensionless temperature

obtained numerically. Fig. 11 shows that the Cth values

of Eq. (37) converge asymptotically to the theoretical

constant ffi0.682 as the Reynolds number increases,

presenting then a good agreement between the theoret-

ical derivation obtained in Section 3 and the numerical

results. This means that the bold ceiling curves presented

in Figs. 8–10 do not represent the best design, which in

fact belongs to a much more complex design (i.e., ideal

configuration). According to Eq. (17), the gap between

the ideal configuration (Cth ¼ 1) and the numerical re-

sults for eD0 ¼ 1 (Cth ffi 0:682) will be filled by a complex

distribution of heat sources each one with a length of

D0=L ! 0. The higher the complexity, the better the

thermal performance. Furthermore, it also should be

noticed that the theory breaks down at low Reynolds

numbers, Re6 200.
6. Conclusions

This paper addressed the fundamental problem of

how to allocate discrete heat sources to the space on a

wall cooled by forced convection. The objective was to

maximize the global conductance between the wall and

the coolant. The analysis showed that the heat sources

must be distributed nonuniformly on the wall, and that

the optimal spacings between heat sources depend on

the Reynolds number. This work dealt specifically with

forced convection, however, the same constructal prin-

ciple can be used to determine optimal spatial allocation

in natural convection [15].

Two distinct regions were identified on a wall with

optimally distributed heat sources. The first region is

located upstream of a transition point, x0, near the tip

of the boundary layer. In this region the heat sources

should be mounted flush against each other. The

second region is located downstream of x0, and is

characterized by a nonuniform distribution of heat

sources, with the smallest spacings between the heat

sources close to x0, and the largest near the trailing

edge.

The results of analytical optimization were verified

numerically. The flow in a discretely heated channel was

simulated numerically. The global conductance was

maximized for configurations with one, two and three

heat sources (Cmax, C2m and C3m), and in all cases the

wall was covered incompletely by heat sources, N
D0 < L. The numerical results showed that the migration

of the heat sources towards the tip of the boundary layer

depends strongly on the Reynolds number and the heat

source length D0. Diminishing returns were also ob-

served: the stepwise increase in global conductance de-

creases as the number of heat sources increases. The

maximized global conductance was found to be

approximately proportional to Re0:47, regardless of N or

D0. The results also showed that for fixed a heated area,

the global conductance increases with the number of

optimally placed heat sources.

Finally, in Fig. 11 we showed that the best possible

design is not the one in which the wall is heated uni-

formly (N D0 ¼ L). The best are the highly complex

configuration characterized by large numbers of opti-

mally placed heat sources. This occurs in the limit of

x0=L ! 0. This direction could be explored numerically

in future work, filling the gap between numerical results

presented in this paper and the ideal configurations

identified in Sections 2 and 3.
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